
Joint sOc-EUSAI conference Grenoble, october 2005

p. 2 6 5

An ontology-based context management and reasoning process for UbiComp
applications

Eleni Christopoulou(1), Christos Goumopoulos(1) & Achilles Kameas(1), (2)

(1) Research Academic Computer Technology
Institute, Research Unit 3, Design of Ambient
Information Systems Group, N. Kazantzaki str., Rio
Campus, 26500, Patras, Greece
{hristope, goumop, kameas}@cti.gr

(2) Hellenic Open University,
School of Science & Technology,
23 Sahtouri str. 26222, Patras, Greece

Abstract

UbiComp applications operate within an extremely dynamic
and heterogeneous environment and have to dynamically
adapt to changes in their environment as a result of users’ or
other actors’ activities. So context definition, representation,
management and use become important factors that affect their
operation. To ease the development of such applications it is
necessary to decouple application composition from context
acquisition and representation, and at the same time provide
universal models and mechanisms to manage context. In this
paper is presented an approach for building a context-aware
UbiComp system organised in hierarchical levels. The focus
of the paper is on an ontology-based context modelling,
management and reasoning process developed for composing
context-aware UbiComp applications from AmI artefacts.

1. Introduction

The human communication model represents an efficient and
effective way to convey information, thoughts, feelings, etc.
from person to person. This is based on the fact that in a
social dialogue members are sharing an implicit awareness of
related situations, of adjacent background, of context
environment, and possess the skills to assess, infer and adapt
their behaviour appropriately. However, in a human-computer
interaction, such an implicit channel of understanding is
missing.

Ambient Intelligence (AmI) evangelises computing so
integrated into everyday objects that it becomes invisible to
users [19]. Hidden computers and ubiquitous computing
(UbiComp) applications should take into account the user and
environmental context and adjust their behaviour in order to
improve the provided services to humans [20], [22]. As these
applications operate within a dynamic and heterogeneous
environment, the context definition, representation,
management and use become important factors that affect and
challenge their composition and operation.

In the last few years significant efforts have been devoted
to research methods and models for capturing, representing,
interpreting and exploiting context information. However, we
are still far away from enabling an implicit and intuitive
awareness of context, and adaptation to behaviour as
efficiently as the human communication practice indicates.
Most of the current context-aware systems have been built in
an ad-hoc approach, deeply affected by the underlying
technology infrastructure utilized to capture the context [7].
To ease the development of context-aware UbiComp
applications it is necessary to decouple application
composition from context acquisition and representation, and
at the same time provide universal models and mechanisms to
manage context. The target of this paper is to present an

approach for building a context-aware UbiComp system and
the context modelling, management and reasoning process
that we developed based on this approach.

The structure of the paper is as follows. Section 2 outlines
how context is modelled and used in various UbiComp
applications focusing on ontology-based context models. In
Section 3 we present our approach for building a context-
aware UbiComp system. The ontology-based context
management and reasoning process that we developed based
on this approach is described in Section 4. Lessons learned
are presented through a prototype application in Section 5.
Finally, Section 6 concludes with a glance on future work.

2. Context-aware UbiComp applications

According to [7] context is: “Any information that can be
used to characterise the situation of entities (i.e. whether a
person, place or object) that are considered relevant to the
interaction between a user and an application, including the
user and the application themselves.” Context is typically the
location, identity and state of people, groups and computation
and physical objects, although in UbiComp applications other
kinds of context can be used like physical (e.g. location and
time), environmental (e.g. weather and light) and personal
information (e.g. mood and activity).

A number of informal and formal context models have
been proposed in various UbiComp systems; a survey of
context models is presented in [16]. Among systems with
informal context models, Context Toolkit [6] represents
context in form of attribute-value tuples, and Cooltown [12]
proposed a Web based model of context in which each object
has a corresponding Web description. Both ER and UML
models are used for the representation of formal context
models in [10]. As ontologies are a promising instrument to
specify concepts and their interrelations, they can provide a
uniform way for specifying a context model’s core concepts
as well as an arbitrary amount of subconcepts and facts,
altogether enabling contextual knowledge sharing and reuse
in a UbiComp system [5]. Thus several research groups have
presented ontology-based models of context and used them in
UbiComp applications; following we briefly describe the
most representative ones.

In the Smart Spaces framework GAIA [14] is presented
an infrastructure that supports the gathering of context
information from different sensors and the delivery of
appropriate context information to UbiComp applications.
Their target was to develop a flexible and expressive model
for context that can represent the wide variety of possible
contexts and support complex reasoning on contexts. So they
decided to represent context as first-order predicates written
in DAML+OIL. This context model allows deriving new
contexts from other sensed context.

daisy
Rectangle

Joint sOc-EUSAI conference Grenoble, october 2005

p. 2 6 6

The Context Ontology Language (CoOL) [17] is based on
the Aspect-Scale-Context Information (ASC) model. Aspects
represent classifications (e.g. Temperature), while scales are
individual dimensions of aspects (e.g. Celcius). Context
information is attached to a particular aspect and scale and
quality metadata (e.g. meanError) is associated with
information via quality properties. This contextual knowledge
is evaluated using ontology reasoners, like F-Logic and
OntoBroker. Beyond determination of service interoperability
in terms of contextual compatibility and substitutability, this
language is used to support context-awareness in distributed
service frameworks for various applications.

Wang et al. created an upper ontology, the CONON [18]
context ontology, which captures general features of basic
contextual entities, a collection of domain specific ontologies
and their features in each subdomain. The CONON
ontologies are serialized in OWL-DL which has a semantic
equivalence to well researched description logics. Thus
CONON supports two types of reasoning: reasoning to detect
and correct inconsistent context information and reasoning as
a means to derive higher level context information. The latter
type of reasoning is based on properties like symmetry and
transitivity and user-defined rules.

A promising emerging context modelling approach based
on ontologies is the COBRA-ONT [2], an ontology for
context-aware pervasive computing environments used in the
CoBrA system. This system provides a set of OWL ontologies
developed for modelling physical locations, devices, temporal
concepts, privacy requirements and several other kinds of
objects within UbiComp environments. CoBrA employs
reasoning for detecting and resolving inconsistent context
information, evaluating privacy policies and inferring
additional context information based on properties such as
temporal and spatial relations. As CoBrA’s reasoning over
context information is based purely on OWL without
additional rule, it is quite limited.

Although each research group follows a different
approach for using ontologies in modelling and managing
context in UbiComp applications, it has been acknowledged
by the majority of researchers [1], [6], [14], [13], [9] that it is
a necessity to decouple the process of context acquisition and
interpretation from its actual use, by introducing a consistent,
reliable and secure context framework which can facilitate the
development of context-aware applications.

In this respect, we propose an approach for a context-
aware UbiComp system that eases the composition of such
applications and separates it from the process of context
acquisition. The ontology-based context management and
reasoning process that we developed for such a system targets
to overcome some limitations of the existing infrastructures
presented above. In order to preserve the autonomous nature
of artefacts we store an ontology into each artefact and not
various ontologies into a server as in GAIA and CoBrA. This
solution also overcomes the limitation of systems that demand
a specific context ontology for each application. Finally our
reasoning process is also enhanced with user-defined rules
applied on context stored in each artefact.

3. An approach for building a context-aware
UbiComp system

A context-aware application consists of an infrastructure to
capture context and a set of rules governing how the
application should respond to context changes. In order to
isolate the user from the process of context acquisition and
management and provide to him a UbiComp system that

enables the composition of context-aware applications we
propose a system organised in a hierarchy of levels.

Lexical Level : This level examines how signals from
the environment, which are captured by sensors, are
translated into basic context events or tokens. Generally, any
sensor that can contribute to the modelling of the real-world
can be considered as source of context. The objective of this
level is that context can be modelled in abstraction from
sensor technologies and characteristics of particular sensors.
The context events can be analysed/combined in the next
level in order to represent context phrases or atoms.

Syntact ical /Represen tat ion Level : The target of
this level is to translate context events to meaningful context
information (context atoms) by matching sensor data values
to real world properties, which have a meaning for some
entity of concern (person, place, activity) according to an
ontology. In the simplest approach, the representation level
can include mappings from data gathered from one or more
sensors to context related values defined by an ontology (e.g.,
the light level is mapped into {low, med, high}).

Reasoning Level : The objective of this level is to
provide models for context fusion in context hierarchies.
Many sensors and many context atoms are aggregated to infer
high-level context properties. For example, the context atoms
light, temperature, humidity, noise are combined to infer the
high-level context atmosphere {esoteric, exoteric}. Context
inference may be seen as a classification problem. In simple
cases the reasoning may also be based on the definition of an
ontology, which may use simple description logic or user-
defined reasoning using first-order logic.

P lann ing Level : The aim of this level is to define
strategies and schedule actions to be taken in response to
context variance. We share the same view as described in [8]
that usability and predictability of ubiquitous systems arises
from a clear and easily grasped relationship between the
context structure and the changes in the behaviour we
observe. In current systems this relationship is not explicitly
articulated but instead exists implicitly in the system’s
reaction to events. Category theory provides a unified
framework to develop semantics of ubiquitous computing that
reflects the uncertain and inferential nature of contextual
services and their adaptation. The goal is to support the
capture of the "behavioural envelope" within which a system
can adapt and the strategies for that adaptation.

In teract ion Level : The objective of this level is to
provide models for personal and collective interactions in
AmI environments. A high-level conceptual model separates
the low-level context acquisition (lexical level) from the
context characterization (representation/reasoning level),
from the delivery and reaction to the context (planning level)
and from the composition of context-aware UbiComp
applications. The developer/user is given a set of abstractions
and has to think and design his application in terms of these
abstractions. The higher the abstractions the more
implementation details are hided.

daisy
Rectangle

Joint sOc-EUSAI conference Grenoble, october 2005

p. 2 6 7

4. An ontology-based context management
and reasoning process

In this section we describe the system that we developed
based on the aforementioned approach focusing on its context
management and reasoning process.

4.1. A conceptual model for UbiComp applications
composition

The key idea behind the proposed conceptual model is that
artefacts of AmI environment can be treated as components of
a UbiComp application and users can compose UbiComp
applications by creating associations between the artefacts.
The Plug/Synapse model [21] serves as a common interfacing
mechanism between artefacts providing the means to create
large scale systems based on simple building blocks. Plugs
make visible the artefact’s properties, capabilities and
services to people and to other artefacts, while synapses are
associations between two compatible plugs.

In terms of the application developer, the plugs can be
considered as context-providers that offer high-level
abstractions for accessing context (e.g., location, state,
activity, etc.). For example, an eLamp may have a plug that
outputs if the eLamp is switched on or switched off and an
eRoom a plug for informing if someone is in this room or not.
In terms of the service infrastructure (middleware), they
comprise reusable building blocks for context rendering that
can be used or ignored depending on the application needs.
Each context-provider component reads input sensor data
related to the specific application and can output either low
level context information such as location, time, light level,
temperature, proximity, motion, blood pressure or high-level
context information such as activity, environment and mood.
An artefact from its own experience and use has two different
levels of context; the low level which information acquired
from its own sensors and the high level that is an
interpretation of its low level context information.
Additionally an artefact can get context information from the
plugs of other artefacts; this context can be considered as
information from a “third-person experience”.

The application developers by establishing synapses
between plugs both denote their preferences and needs and
define the behaviour of the UbiComp application. From the
service infrastructure perspective, the synapses determine the
context of operation for each artefact; thus each artefact’s
functionality is adapted to the UbiComp application’s
structure.

Providing users with this conceptual model, we aim to
decouple the low-level context management from the
application business logic, which is captured as expressions
in terms of high-level concepts that are matched with services
available in the current application context. Instead of the
classical approach of established interfaces for resource
access, this approach decouples the high-level concepts from
the instances implemented by each context.

4.2. Context management process

The design approach for composing context-aware UbiComp
applications, described in the previous section, needs to be
backed by an engineering methodology that defines the
correct formulation of the context and behaviour. The
proposed context management process is depicted in Fig. 1.
The motivation for this process emerged from the fact that
artefacts in AmI environment may be in different “states” that

change according to the artefacts’ use from users and their
reaction is based both on users’ desires and these states.

Figure 1: Context management process.

The first step in this context management process is the
acquisition of the low level context, which is the raw data
given by the sensors (Lexical Level). A set of sensors are
attached to an artefact so that to measure various artefact
parameters, e.g. the position and the weight of an object
placed on an augmented table. As the output of different
sensors that measure the same artefact parameter may differ,
e.g. sensors may use different metric system, it is necessary to
interpret the sensors’ output to higher level context
information (Syntactical/Representation Level). Aggregation
of context is also possible meaning that semantically richer
information may be derived based on the fusion of several
measurements that come from different homogeneous or
heterogeneous sensors. For example, in order to determine if
an object is placed on a table requires monitoring the output
of table’s position and weight sensors.

Having acquired the necessary context we are in a
position to assess an artefact’s state (Reasoning Level) and
decide appropriate response activation (Planning Level).
Adopting the definition from Artificial Intelligence, a state is
a logical proposition defined over a set of context
measurements [15]. This state assessment is based on a set of
rules defined by the artefact’s creator. The reaction may be as
simple as turn on an mp3 player or send an sms to the user or
a composite one such as the request of a specific service, e.g.
a light service. Such a decision may be based on local context
or may require context from external sources as well, e.g.,
environmental context, location, time, other artefacts. The
low (sensor) and high (fused) level data, their interpretation
and the local and global decision-making rules are encoded in
an ontology.

4.3. An ontology-based context model

The ontology that we created in order to support both the
aforementioned conceptual model and the context
management process is an enhanced version of the GAS
Ontology [3], [4] represented in DAML+OIL. The definition
of an artefact’s state is emerged from the characterisation of
an artefact and it is strongly related to the values of its
parameters measured by its sensors. Thus we decided to add
the concepts of State and Parameter and define the relations
between these concepts and the concept of artefact.

The ontology stored in each artefact is divided into two
layers: a common one (Fig. 2) that contains the description of
the basic concepts of UbiComp applications and their inter-

daisy
Rectangle

Joint sOc-EUSAI conference Grenoble, october 2005

p. 2 6 8

relations and represents the common language among
artefacts and a private one that represents artefact’s own
description as well as its new “knowledge” (experience) has
accumulated from its use.

Figure 2: Ontology-based context model.

The basic goal of this ontology is to support a context
management process that is based on a set of rules which
determine the way that a decision is taken and must be
applied on existing knowledge represented by this ontology.
The description of the different types of these rules follows.

4.3.1. Rules for artefact’s state assessment

The left part of these rules denotes the parameters that affect
the state of an artefact and the thresholds or the values for
these specific parameters that lead to the activation of the
rule, while the right part of these rules denotes the artefact’s
state that is activated. These rules support the “translation” of
low level context (values of parameters measured by sensors)
to state assessment; they may also incorporate the translation
from low level context to high level context (e.g. perform a
set of operations to values measured by sensors like estimate
the average value).

4.3.2. Rules for the local decision-making process

These rules exploit exclusively knowledge from the artefact
that uses them. Their left part denotes the artefact’s states that
must be detected and their possible activation level and their
right part denotes the artefact’s requests and needs. When an
artefact has a specific need we can consider that it needs a
type of service offered by another artefact. When a rule from
this category is activated, the artefact has to search its
synapses in order to find a synapse which is associated to
another artefact’s plug that provides the requested service. If
such a synapse is found then the artefact can select it in order
to satisfy its need. The situations where more than one
synapse is found that may be used to satisfy the request or no
synapses are found are handled from the local decision
process using another kind of rules. The rules that define the
final reaction of an artefact can be defined from the user or
can be based on specifically user-defined policies. These rules
support both the context delivery and the reaction of an
artefact based on the local decision from state assessments.

4.3.3. Rules for the global decision-making process

These rules are similar to the rules for the local decision-
making. Their main difference is that the rules for the global
decision-making process have to take into account the states
of other artefacts and their possible reactions so that to
preserve a global state defined by the user.

4.4. Design & Implementation

The architecture of the system that implements the
aforementioned context management and reasoning process is
on Fig 3. The core modules of this system, Ontology
manager, Rule manager and Inference Engine, are part of an
updated version of the GAS-OS kernel [11], a middleware
that supports the composition of context-aware UbiComp
applications and should run on each artefact that participates
in such applications.

Figure 3: System’s architecture.

The Ontology Manager is the responsible module for the
manipulation of knowledge represented into the artefact’s
ontology. Specifically, it can only query the artefact’s
common ontology, since this ontology cannot be changed
during the deployment of an application. On the other hand, it
can both query and update the artefact’s private ontology. The
basic functionality of the Ontology Manager is to provide the
other modules of the system with knowledge stored in the
artefact’s ontology by adding a level of abstraction between
them and the ontology.

The Rule Manager is the module that manages the
artefact’s rule base and it is responsible for both querying and
updating this rule base. Note that the rules stored in an
artefact’s rule base may only contain parameters, states and
SPlugs that are defined into the artefact’s private ontology.
The rule set for a specific artefact can be easily created
through a graphical user interface using the Ontology-based
Supervisory Logic and Data Acquisition tool. Using this tool,
users can easily create rule sets that satisfy the system’s
constraint that rules should only contain elements defined
into the artefact’s private ontology. Through this tool users
can also change an artefact’s rule set dynamically during the
participation of the artefact in an application. When the Rule
Manager gets an updated rule set from the Ontology-based
Supervisory Logic and Data Acquisition tool, it forces the
Inference Engine to restart with the updated rule set.

For the initialisation of the context management process
apart from the rules a set of initial facts are necessary. The
Rule Manager is also responsible for the creation of a file
containing the initial facts for an artefact. For example an
initial fact may define the existence of an artefact by denoting
its parameters, states and SPlugs (reactions) that can
participate in its rules and their initial values. In order to
create such an initial fact the Rule Manager uses knowledge
stored in the artefact’s ontology. So it queries the Ontology
Manager for any information that it needs, like the artefact’s
parameters, states and SPlugs.

The Inference Engine supports the decision-making
process and it is based on the Jess rule engine (Java Expert
System Shell) [23]. In order to initialise its process execution,
the Inference Engine needs the artefact’s initial facts, which
are defined by the Rule Manager, and the rules stored in the

daisy
Rectangle

Joint sOc-EUSAI conference Grenoble, october 2005

p. 2 6 9

rule base. Note that in the current version of our system the
rules in the rule base are stored in Jess format. The Inference
Engine is informed for all the changes of parameters’ values
measured by artefact’s sensors. When it is informed for such a
change it runs all the rules of the rule base. If a rule is
activated, this module informs the artefact’s operating system
for the activation of this rule and for the knowledge that is
inferred. The artefact’s state and reaction is determined from
this inferred knowledge.

5. Lessons learned

In this section we provide an evaluation of our system
through the composition of a prototype context-aware
UbiComp application and the presentation of the context
management process. Our prototype application is an
everyday context-aware UbiComp application that aims to
keep the user informed about the state of an elderly person.
The components of this application are the following:

eHeal thyBox: an artefact that monitors the health
status of a person based on measurements of sensors attached
to person’s body. For example, we have used the SelfCheck
BP sensor of the Card Guard – The Telemedicine Company; a
personal wireless blood pressure and pulse rate monitor. The
eHealthyBox based on sensors’ measurements and the rules

stored into its rule base can decide whether the situation is
critical or not. A sample of rules from this rule base is
presented in Fig. 4.

Figure 4: eHealthyBox rule base.

eMobi leP hone: an artefact used for sending sms.
eLamp: a floor lamp used for visual notifications.
eMP 3P layer: an mp3 player for audio messages.
eDoormat : an augmented rug with pressure sensors

attached, used for sensing the occupancy of a house. Based on
the sequence the pressure sensors are pressed the eDoormat is
capable of deducing if someone is entering or leaving a
house, thus if the house is occupied or not.

eMoodCube: an augmented Mathmos lamp with tilt
switches attached, used for defining the current status of the
user, such as “available”, “do not disturb” etc.

According to the scenario Maria, a 78-years old woman,
prefers to stay alone in her own house than to live with her
son John. Because of the possibility of a heart attack, John
wants to be informed about the condition of his mother. The
state of Maria’s health is defined by a set of sensors attached
to her body. The eHealthyBox monitors Maria’s state and
informs John if her situation is critical and if she needs
special care. If Maria’s situation is critical the eHealthyBox
has to inform John, so it gets from the eDoormat through a
synapse the context information if John is in his house or not.

If John is in his house, depending on his current status that is
determined by the eMoodCube, the eLamp and eMP3Player
are used to provide the appropriate visual and acoustic
notification respectively to him. If the eMoodCube is set to a
“Do not disturb” status, John is notified only for the emergent
events. In the case John is out of house, the eMobilePhone
will send him an sms informing him about Maria’s condition.

Initially John has to compose this application by selecting
the artefacts that will take part and setting the synapses
between their plugs. For example, John has to set a synapse
between the suitable plugs of eHealthyBox and eLamp so that
to denote that when his mother’s state is critical the eLamp is
blinking. For this process John can use an editing tool, like
the GWEditor [21], that supports the composition of such
applications based on the Plug/Synapse model. The
establishment of synapses between two compatible plugs
results to the update of both artefacts’ private ontologies by
the Ontology Manager.

Then John has to set the rules that determine the context
management process. This is feasible by using an Ontology-
based Supervisory Logic and Data Acquisition tool; a
graphical user interface, which provides the user variable
operations for viewing the knowledge represented by an
artefact’s ontology, monitoring an artefact’s state and
managing an artefact’s rules for the context management
process. For example John using such a tool may define the
rule that denotes that when he is out of house he will be
informed about his mother’s condition by receiving an sms to
his mobile phone. The updates on context management
process’ rules through this tool conclude to the update of the
artefact’s rule base by the Rule Manager. When the rule base
of an artefact is updated dynamically during its deployment
the Rule Manager informs the Inference Engine so that to
restart its process with the updated rule base.

The first target of our research was to define an ontology-
based context model that decouples the process of context
acquisitions and interpretation from its actual use. This target
was partially achieved since through the Plug/Synapse model
the user has just to denote the sources of context that artefacts
can exploit and to define the interpretation of this context
through rules. This may become difficult especially for
defining the rules of global decision making. So we believe
that users need a tool that permits the definition of abstract
rules for the whole application and creates the necessary ones
to be stored in each artefact of the application.

The second target of our work was to implement the
proposed context management and reasoning process. The
module that is responsible for this reasoning process is the
Inference Engine. Assume the rules of eHealthyBox presented
in Fig. 4. Any change to the low level context of eHealthyBox
(raw data from its sensors) informs the Inference Engine and
generates a new “run”. If the value of the pulse rate is above
the threshold then the first three rules will be activated. Then
the Inference Engine will inform the operating system of the
eHealthyBox for the inferred knowledge; specifically it will
define the message that must be sent through an SPlug. The
other artefacts of our prototype will be informed for the
context emerged from the state of eHealthyBox, which
represents Maria’s condition, through the synapses between
their SPlugs and the eHealthyBox’s SPlug. From experiments
that we worked out we concluded that the inference
mechanism that we developed and defines an artefact’s state
and reaction based on context information is fairly efficient
for a number of forty rules.

Using our context management and reasoning process
such applications can be dynamically changed either by

If (PulseRate > Maria.PR_Threshold) then
EnableEmergentEvent
If (EnableEmergentEvent) then CallAmbulance();
If (EnableEmergentEvent) then NotifyJohn();

If (BodyTemp > 37.5) and (BodyTemp <= 38) then
EnableFeverEvent
If (BodyTemp > 38) and (BodyTemp <= 39) then
EnableFeverAlert
If (BodyTemp > 39) then EnableFeverEmergency
If (EnableFeverEvent) then NotifyMaria();
If (EnableFeverAlert) then NotifyMaria(); NotifyJohn();
If (EnableFeverEmergency) then NotifyMaria();
NotifyJohn(); NotifyDoctor();

daisy
Rectangle

Joint sOc-EUSAI conference Grenoble, october 2005

p. 2 7 0

adding or removing artefacts, as each artefact acquires and
manages context separately based on its rule set. Finally the
reasoning process permits user-defined rules that can be
dynamically updated.

6. Future Work

In this paper we presented an ontology-based context
modelling, management and reasoning process that was
developed for the composition of context-aware UbiComp
applications from AmI artefacts.

Our next steps for the future are to represent the artefacts’
ontologies in OWL (Web Ontology Language) and the rules
in SWRL (Semantic Web Rule Language) and try use the
Jena framework for inference and reasoning. Additionally, we
want to introduce a degree of uncertainty in the reasoning
process based on the reliability of sensors’ measurements and
by adding confidence values to the rules’ activation part.
Finally, end-users may not need to configure each artefact
separately (e.g. setting its rules), but to view and manage the
whole application in an abstract way. The system and the
context management process that we have developed can
support both these approaches, but enhanced end-users tools
focusing on context handling are necessary.

References

[1] Biegel, G., Cahill, V. (2004) A Framework for
Developing Mobile, Context Aware Applications. in 2nd IEEE
Conference on Pervasive Computing and Communications.
Orlando, FL, March 14-17.
[2] Chen, H., Finin, T., Joshi, A. (2004) An ontology for
context aware pervasive computing environments. Knowledge
Engineering Review - Special Issue on Ontologies for
Distributed Systems, Cambridge University Press.
[3] Christopoulou, E., Kameas, A. (2005) GAS Ontology: an
ontology for collaboration among ubiquitous computing
devices. in International Journal of Human – Computer
Studie: special issue on Protégé. Vol. 62, issue 5.
[4] Christopoulou, E., Kameas, A. (2004) Using ontologies
to address key issues in ubiquitous computing systems. in 2nd
European Symposium on Ambient Intelligence. Eindhoven,
the Netherlands. LNCS, Vol. 3296, pp 13-24.
[5] De Bruijn, J. (2003) Using Ontologies – Enabling
Knowledge Sharing and Reuse on the Semantic Web.
Technical Report DERI-2003-10-29. Digital Enterprise
Research Institute (DERI), Austria.
[6] Dey, A. K., Salber, D., Abowd, G. D. (2001) A
Conceptual Framework and a Toolkit for Supporting the
Rapid Prototyping of Context-Aware Applications, Human-
Computer Interaction Journal, Volume 16 (2-4), pp. 97-166.
[7] Dey, A. K. (2001) Understanding and using context,
Personal and Ubiquitous Computing, Special issue on
Situated Interaction and Ubiquitous Computing 5, 1.

[8] Dobson, S., Nixon, P. (2004) More principled design of
pervasive computing systems, in Proceedings of Engineering
for Human-Computer Interaction and Design, Specification
and Verification of Interactive Systems. Hamburg, Germany.
[9] Henricksen, K., Livingstone, S., Indulska, J. (2004)
Towards a Hybrid Approach to Context Modelling, Reasoning
and Interoperation. in the proc. of the 1st International
Workshop on Advanced Context Modeling, Reasoning and
Management, 6th UBICOMP. Nottingham, UK. pp. 54-61.
[10] Henricksen, K., Indulska, J., Rakotonirainy, A. (2002)
Modeling Context Information in Pervasive Computing
Systems, In F. Mattern and M. Naghshineh, editors, Pervasive
2002, pp. 167– 180, Springer Verlag, Berlin.
[11] Kameas, A., et al. (2003) An Architecture that Treats
Everyday Objects as Communicating Tangible Components.
in 1st IEEE International Conference on Pervasive
Computing and Communications. Fort Worth, USA.
[12] Kindberg T. et al. (2000) People, Places, Things: Web
Presence for The Real World, Technical Report HPL-2000-
16, HP Labs.
[13] Nixon, P. et al. (2002) Engineering context-aware
enterprise systems. in Workshop on Engineering Context-
Aware Object-Oriented Systems and Environments. Seattle,
USA.
[14] Ranganathan, A., Campbell, R. (2003) An infrastructure
for context-awareness based on first order logic. Personal
and Ubiquitous Computing. 7(6):353–364.
[15] Russell, S., Norvig, P. (2003) Artificial Intelligence: A
Modern Approach. Prentice Hall, 2nd edition.
[16] Strang, T., Linnhoff-Popien, L. (2004) A Context
Modeling Survey. in 1st International Workshop on
Advanced Context Modelling, Reasoning And Management,
Nottingham, 6th International Conference on Ubiquitous
Computing. UK. pp. 33-40.
[17] Strang, T., Linnhoff-Popien, L., Frank, K. (2003) CoOL:
A Context Ontology Language to enable Contextual
Interoperability. in LNCS 2893: proc. of 4th IFIP WG 6.1
International Conference on Distributed Applications and
Interoperable Systems. Paris, France. pp. 236–247.
[18] Wang, X. H. et al. (2004) Ontology Based Context
Modeling and Reasoning using OWL, Workshop on Context
Modeling and Reasoning at IEEE International Conference on
Pervasive Computing and Communication. Orlando, Florida.
[19] Weiser, M. (1991) The Computer for the 21st Century.
Scientific American. 265, pp. 94-10.
[20] Disappearing Computer initiative website
http://www.disappearing-computer.net/
[21] extrovert-Gadgets project website http://www.extrovert-
gadgets.net
[22] IST Advisory Group (ISTAG) (2001): Scenarios for
Ambient Intelligence in 2010. http://www.cordis.lu/ist/istag-
reports.htm
[23] Jess - the Rule Engine for the Java Platform
http://herzberg.ca.sandia.gov/jess/

daisy
Rectangle

