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Abstract 

UbiComp applications operate within an extremely dynamic 
and heterogeneous environment and have to dynamically 
adapt to changes in their environment as a result of users’ or 
other actors’ activities. So context definition, representation, 
management and use become important factors that affect their 
operation. To ease the development of such applications it is 
necessary to decouple application composition from context 
acquisition and representation, and at the same time provide 
universal models and mechanisms to manage context. In this 
paper is presented an approach for building a context-aware 
UbiComp system organised in hierarchical levels. The focus 
of the paper is on an ontology-based context modelling, 
management and reasoning process developed for composing 
context-aware UbiComp applications from AmI artefacts. 

1. Introduction 

The human communication model represents an efficient and 
effective way to convey information, thoughts, feelings, etc. 
from person to person. This is based on the fact that in a 
social dialogue members are sharing an implicit awareness of 
related situations, of adjacent background, of context 
environment, and possess the skills to assess, infer and adapt 
their behaviour appropriately. However, in a human-computer 
interaction, such an implicit channel of understanding is 
missing.  

Ambient Intelligence (AmI) evangelises computing so 
integrated into everyday objects that it becomes invisible to 
users [19]. Hidden computers and ubiquitous computing 
(UbiComp) applications should take into account the user and 
environmental context and adjust their behaviour in order to 
improve the provided services to humans [20], [22]. As these 
applications operate within a dynamic and heterogeneous 
environment, the context definition, representation, 
management and use become important factors that affect and 
challenge their composition and operation. 

In the last few years significant efforts have been devoted 
to research methods and models for capturing, representing, 
interpreting and exploiting context information. However, we 
are still far away from enabling an implicit and intuitive 
awareness of context, and adaptation to behaviour as 
efficiently as the human communication practice indicates. 
Most of the current context-aware systems have been built in 
an ad-hoc approach, deeply affected by the underlying 
technology infrastructure utilized to capture the context [7]. 
To ease the development of context-aware UbiComp 
applications it is necessary to decouple application 
composition from context acquisition and representation, and 
at the same time provide universal models and mechanisms to 
manage context. The target of this paper is to present an 

approach for building a context-aware UbiComp system and 
the context modelling, management and reasoning process 
that we developed based on this approach. 

The structure of the paper is as follows. Section 2 outlines 
how context is modelled and used in various UbiComp 
applications focusing on ontology-based context models. In 
Section 3 we present our approach for building a context-
aware UbiComp system. The ontology-based context 
management and reasoning process that we developed based 
on this approach is described in Section 4. Lessons learned 
are presented through a prototype application in Section 5. 
Finally, Section 6 concludes with a glance on future work. 

2. Context-aware UbiComp applications 

According to [7] context is: “Any information that can be 
used to characterise the situation of entities (i.e. whether a 
person, place or object) that are considered relevant to the 
interaction between a user and an application, including the 
user and the application themselves.” Context is typically the 
location, identity and state of people, groups and computation 
and physical objects, although in UbiComp applications other 
kinds of context can be used like physical (e.g. location and 
time), environmental (e.g. weather and light) and personal 
information (e.g. mood and activity). 

A number of informal and formal context models have 
been proposed in various UbiComp systems; a survey of 
context models is presented in [16]. Among systems with 
informal context models, Context Toolkit [6] represents 
context in form of attribute-value tuples, and Cooltown [12] 
proposed a Web based model of context in which each object 
has a corresponding Web description. Both ER and UML 
models are used for the representation of formal context 
models in [10]. As ontologies are a promising instrument to 
specify concepts and their interrelations, they can provide a 
uniform way for specifying a context model’s core concepts 
as well as an arbitrary amount of subconcepts and facts, 
altogether enabling contextual knowledge sharing and reuse 
in a UbiComp system [5]. Thus several research groups have 
presented ontology-based models of context and used them in 
UbiComp applications; following we briefly describe the 
most representative ones. 

In the Smart Spaces framework GAIA [14] is presented 
an infrastructure that supports the gathering of context 
information from different sensors and the delivery of 
appropriate context information to UbiComp applications. 
Their target was to develop a flexible and expressive model 
for context that can represent the wide variety of possible 
contexts and support complex reasoning on contexts. So they 
decided to represent context as first-order predicates written 
in DAML+OIL. This context model allows deriving new 
contexts from other sensed context. 
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The Context Ontology Language (CoOL) [17] is based on 
the Aspect-Scale-Context Information (ASC) model. Aspects 
represent classifications (e.g. Temperature), while scales are 
individual dimensions of aspects (e.g. Celcius). Context 
information is attached to a particular aspect and scale and 
quality metadata (e.g. meanError) is associated with 
information via quality properties. This contextual knowledge 
is evaluated using ontology reasoners, like F-Logic and 
OntoBroker. Beyond determination of service interoperability 
in terms of contextual compatibility and substitutability, this 
language is used to support context-awareness in distributed 
service frameworks for various applications.  

Wang et al. created an upper ontology, the CONON [18] 
context ontology, which captures general features of basic 
contextual entities, a collection of domain specific ontologies 
and their features in each subdomain. The CONON 
ontologies are serialized in OWL-DL which has a semantic 
equivalence to well researched description logics. Thus 
CONON supports two types of reasoning: reasoning to detect 
and correct inconsistent context information and reasoning as 
a means to derive higher level context information. The latter 
type of reasoning is based on properties like symmetry and 
transitivity and user-defined rules. 

A promising emerging context modelling approach based 
on ontologies is the COBRA-ONT [2], an ontology for 
context-aware pervasive computing environments used in the 
CoBrA system. This system provides a set of OWL ontologies 
developed for modelling physical locations, devices, temporal 
concepts, privacy requirements and several other kinds of 
objects within UbiComp environments. CoBrA employs 
reasoning for detecting and resolving inconsistent context 
information, evaluating privacy policies and inferring 
additional context information based on properties such as 
temporal and spatial relations. As CoBrA’s reasoning over 
context information is based purely on OWL without 
additional rule, it is quite limited.     

Although each research group follows a different 
approach for using ontologies in modelling and managing 
context in UbiComp applications, it has been acknowledged 
by the majority of researchers [1], [6], [14], [13], [9] that it is 
a necessity to decouple the process of context acquisition and 
interpretation from its actual use, by introducing a consistent, 
reliable and secure context framework which can facilitate the 
development of context-aware applications. 

In this respect, we propose an approach for a context-
aware UbiComp system that eases the composition of such 
applications and separates it from the process of context 
acquisition. The ontology-based context management and 
reasoning process that we developed for such a system targets 
to overcome some limitations of the existing infrastructures 
presented above. In order to preserve the autonomous nature 
of artefacts we store an ontology into each artefact and not 
various ontologies into a server as in GAIA and CoBrA. This 
solution also overcomes the limitation of systems that demand 
a specific context ontology for each application. Finally our 
reasoning process is also enhanced with user-defined rules 
applied on context stored in each artefact.  

3. An approach for building a context-aware 
UbiComp system 

A context-aware application consists of an infrastructure to 
capture context and a set of rules governing how the 
application should respond to context changes. In order to 
isolate the user from the process of context acquisition and 
management and provide to him a UbiComp system that 

enables the composition of context-aware applications we 
propose a system organised in a hierarchy of levels. 

Lexical  Level : This level examines how signals from 
the environment, which are captured by sensors, are 
translated into basic context events or tokens. Generally, any 
sensor that can contribute to the modelling of the real-world 
can be considered as source of context. The objective of this 
level is that context can be modelled in abstraction from 
sensor technologies and characteristics of particular sensors. 
The context events can be analysed/combined in the next 
level in order to represent context phrases or atoms.  

Syntact ical /Represen tat ion  Level : The target of 
this level is to translate context events to meaningful context 
information (context atoms) by matching sensor data values 
to real world properties, which have a meaning for some 
entity of concern (person, place, activity) according to an 
ontology. In the simplest approach, the representation level 
can include mappings from data gathered from one or more 
sensors to context related values defined by an ontology (e.g., 
the light level is mapped into {low, med, high}).  

Reasoning Level : The objective of this level is to 
provide models for context fusion in context hierarchies. 
Many sensors and many context atoms are aggregated to infer 
high-level context properties.  For example, the context atoms 
light, temperature, humidity, noise are combined to infer the 
high-level context atmosphere {esoteric, exoteric}. Context 
inference may be seen as a classification problem. In simple 
cases the reasoning may also be based on the definition of an 
ontology, which may use simple description logic or user-
defined reasoning using first-order logic. 

P lann ing Level : The aim of this level is to define 
strategies and schedule actions to be taken in response to 
context variance. We share the same view as described in [8] 
that usability and predictability of ubiquitous systems arises 
from a clear and easily grasped relationship between the 
context structure and the changes in the behaviour we 
observe.  In current systems this relationship is not explicitly 
articulated but instead exists implicitly in the system’s 
reaction to events. Category theory provides a unified 
framework to develop semantics of ubiquitous computing that 
reflects the uncertain and inferential nature of contextual 
services and their adaptation. The goal is to support the 
capture of the "behavioural envelope" within which a system 
can adapt and the strategies for that adaptation. 

In teract ion  Level : The objective of this level is to 
provide models for personal and collective interactions in 
AmI environments. A high-level conceptual model separates 
the low-level context acquisition (lexical level) from the 
context characterization (representation/reasoning level), 
from the delivery and reaction to the context (planning level) 
and from the composition of context-aware UbiComp 
applications. The developer/user is given a set of abstractions 
and has to think and design his application in terms of these 
abstractions. The higher the abstractions the more 
implementation details are hided. 
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4. An ontology-based context management 
and reasoning process 

In this section we describe the system that we developed 
based on the aforementioned approach focusing on its context 
management and reasoning process. 

4.1. A conceptual model for UbiComp applications 
composition 

The key idea behind the proposed conceptual model is that 
artefacts of AmI environment can be treated as components of 
a UbiComp application and users can compose UbiComp 
applications by creating associations between the artefacts. 
The Plug/Synapse model [21] serves as a common interfacing 
mechanism between artefacts providing the means to create 
large scale systems based on simple building blocks. Plugs 
make visible the artefact’s properties, capabilities and 
services to people and to other artefacts, while synapses are 
associations between two compatible plugs. 

In terms of the application developer, the plugs can be 
considered as context-providers that offer high-level 
abstractions for accessing context (e.g., location, state, 
activity, etc.). For example, an eLamp may have a plug that 
outputs if the eLamp is switched on or switched off and an 
eRoom a plug for informing if someone is in this room or not. 
In terms of the service infrastructure (middleware), they 
comprise reusable building blocks for context rendering that 
can be used or ignored depending on the application needs. 
Each context-provider component reads input sensor data 
related to the specific application and can output either low 
level context information such as location, time, light level, 
temperature, proximity, motion, blood pressure or high-level 
context information such as activity, environment and mood. 
An artefact from its own experience and use has two different 
levels of context; the low level which information acquired 
from its own sensors and the high level that is an 
interpretation of its low level context information. 
Additionally an artefact can get context information from the 
plugs of other artefacts; this context can be considered as 
information from a “third-person experience”.  

The application developers by establishing synapses 
between plugs both denote their preferences and needs and 
define the behaviour of the UbiComp application. From the 
service infrastructure perspective, the synapses determine the 
context of operation for each artefact; thus each artefact’s 
functionality is adapted to the UbiComp application’s 
structure. 

Providing users with this conceptual model, we aim to 
decouple the low-level context management from the 
application business logic, which is captured as expressions 
in terms of high-level concepts that are matched with services 
available in the current application context. Instead of the 
classical approach of established interfaces for resource 
access, this approach decouples the high-level concepts from 
the instances implemented by each context. 

4.2. Context management process 

The design approach for composing context-aware UbiComp 
applications, described in the previous section, needs to be 
backed by an engineering methodology that defines the 
correct formulation of the context and behaviour. The 
proposed context management process is depicted in Fig. 1. 
The motivation for this process emerged from the fact that 
artefacts in AmI environment may be in different “states” that 

change according to the artefacts’ use from users and their 
reaction is based both on users’ desires and these states. 

 

Figure 1: Context management process. 

The first step in this context management process is the 
acquisition of the low level context, which is the raw data 
given by the sensors (Lexical Level). A set of sensors are 
attached to an artefact so that to measure various artefact 
parameters, e.g. the position and the weight of an object 
placed on an augmented table. As the output of different 
sensors that measure the same artefact parameter may differ, 
e.g. sensors may use different metric system, it is necessary to 
interpret the sensors’ output to higher level context 
information (Syntactical/Representation Level). Aggregation 
of context is also possible meaning that semantically richer 
information may be derived based on the fusion of several 
measurements that come from different homogeneous or 
heterogeneous sensors. For example, in order to determine if 
an object is placed on a table requires monitoring the output 
of table’s position and weight sensors. 

Having acquired the necessary context we are in a 
position to assess an artefact’s state (Reasoning Level) and 
decide appropriate response activation (Planning Level). 
Adopting the definition from Artificial Intelligence, a state is 
a logical proposition defined over a set of context 
measurements [15]. This state assessment is based on a set of 
rules defined by the artefact’s creator. The reaction may be as 
simple as turn on an mp3 player or send an sms to the user or 
a composite one such as the request of a specific service, e.g. 
a light service. Such a decision may be based on local context 
or may require context from external sources as well, e.g., 
environmental context, location, time, other artefacts. The 
low (sensor) and high (fused) level data, their interpretation 
and the local and global decision-making rules are encoded in 
an ontology. 

4.3. An ontology-based context model 

The ontology that we created in order to support both the 
aforementioned conceptual model and the context 
management process is an enhanced version of the GAS 
Ontology [3], [4] represented in DAML+OIL. The definition 
of an artefact’s state is emerged from the characterisation of 
an artefact and it is strongly related to the values of its 
parameters measured by its sensors. Thus we decided to add 
the concepts of State and Parameter and define the relations 
between these concepts and the concept of artefact. 

The ontology stored in each artefact is divided into two 
layers: a common one (Fig. 2) that contains the description of 
the basic concepts of UbiComp applications and their inter-
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relations and represents the common language among 
artefacts and a private one that represents artefact’s own 
description as well as its new “knowledge” (experience) has 
accumulated from its use. 

 

Figure 2: Ontology-based context model. 

The basic goal of this ontology is to support a context 
management process that is based on a set of rules which 
determine the way that a decision is taken and must be 
applied on existing knowledge represented by this ontology. 
The description of the different types of these rules follows. 

4.3.1. Rules for artefact’s state assessment 

The left part of these rules denotes the parameters that affect 
the state of an artefact and the thresholds or the values for 
these specific parameters that lead to the activation of the 
rule, while the right part of these rules denotes the artefact’s 
state that is activated. These rules support the “translation” of 
low level context (values of parameters measured by sensors) 
to state assessment; they may also incorporate the translation 
from low level context to high level context (e.g. perform a 
set of operations to values measured by sensors like estimate 
the average value). 

4.3.2. Rules for the local decision-making process 

These rules exploit exclusively knowledge from the artefact 
that uses them. Their left part denotes the artefact’s states that 
must be detected and their possible activation level and their 
right part denotes the artefact’s requests and needs. When an 
artefact has a specific need we can consider that it needs a 
type of service offered by another artefact. When a rule from 
this category is activated, the artefact has to search its 
synapses in order to find a synapse which is associated to 
another artefact’s plug that provides the requested service. If 
such a synapse is found then the artefact can select it in order 
to satisfy its need. The situations where more than one 
synapse is found that may be used to satisfy the request or no 
synapses are found are handled from the local decision 
process using another kind of rules. The rules that define the 
final reaction of an artefact can be defined from the user or 
can be based on specifically user-defined policies. These rules 
support both the context delivery and the reaction of an 
artefact based on the local decision from state assessments. 

4.3.3. Rules for the global decision-making process 

These rules are similar to the rules for the local decision-
making. Their main difference is that the rules for the global 
decision-making process have to take into account the states 
of other artefacts and their possible reactions so that to 
preserve a global state defined by the user. 

4.4. Design & Implementation 

The architecture of the system that implements the 
aforementioned context management and reasoning process is 
on Fig 3. The core modules of this system, Ontology 
manager, Rule manager and Inference Engine, are part of an 
updated version of the GAS-OS kernel [11], a middleware 
that supports the composition of context-aware UbiComp 
applications and should run on each artefact that participates 
in such applications.  

 

Figure 3: System’s architecture. 

The Ontology Manager is the responsible module for the 
manipulation of knowledge represented into the artefact’s 
ontology. Specifically, it can only query the artefact’s 
common ontology, since this ontology cannot be changed 
during the deployment of an application. On the other hand, it 
can both query and update the artefact’s private ontology. The 
basic functionality of the Ontology Manager is to provide the 
other modules of the system with knowledge stored in the 
artefact’s ontology by adding a level of abstraction between 
them and the ontology. 

The Rule Manager is the module that manages the 
artefact’s rule base and it is responsible for both querying and 
updating this rule base. Note that the rules stored in an 
artefact’s rule base may only contain parameters, states and 
SPlugs that are defined into the artefact’s private ontology. 
The rule set for a specific artefact can be easily created 
through a graphical user interface using the Ontology-based 
Supervisory Logic and Data Acquisition tool. Using this tool, 
users can easily create rule sets that satisfy the system’s 
constraint that rules should only contain elements defined 
into the artefact’s private ontology. Through this tool users 
can also change an artefact’s rule set dynamically during the 
participation of the artefact in an application. When the Rule 
Manager gets an updated rule set from the Ontology-based 
Supervisory Logic and Data Acquisition tool, it forces the 
Inference Engine to restart with the updated rule set.  

For the initialisation of the context management process 
apart from the rules a set of initial facts are necessary. The 
Rule Manager is also responsible for the creation of a file 
containing the initial facts for an artefact. For example an 
initial fact may define the existence of an artefact by denoting 
its parameters, states and SPlugs (reactions) that can 
participate in its rules and their initial values. In order to 
create such an initial fact the Rule Manager uses knowledge 
stored in the artefact’s ontology. So it queries the Ontology 
Manager for any information that it needs, like the artefact’s 
parameters, states and SPlugs. 

The Inference Engine supports the decision-making 
process and it is based on the Jess rule engine (Java Expert 
System Shell) [23]. In order to initialise its process execution, 
the Inference Engine needs the artefact’s initial facts, which 
are defined by the Rule Manager, and the rules stored in the 
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rule base. Note that in the current version of our system the 
rules in the rule base are stored in Jess format. The Inference 
Engine is informed for all the changes of parameters’ values 
measured by artefact’s sensors. When it is informed for such a 
change it runs all the rules of the rule base. If a rule is 
activated, this module informs the artefact’s operating system 
for the activation of this rule and for the knowledge that is 
inferred. The artefact’s state and reaction is determined from 
this inferred knowledge. 

5. Lessons learned 

In this section we provide an evaluation of our system 
through the composition of a prototype context-aware 
UbiComp application and the presentation of the context 
management process. Our prototype application is an 
everyday context-aware UbiComp application that aims to 
keep the user informed about the state of an elderly person. 
The components of this application are the following: 

eHeal thyBox: an artefact that monitors the health 
status of a person based on measurements of sensors attached 
to person’s body. For example, we have used the SelfCheck 
BP sensor of the Card Guard – The Telemedicine Company; a 
personal wireless blood pressure and pulse rate monitor. The 
eHealthyBox based on sensors’ measurements and the rules 

stored into its rule base can decide whether the situation is 
critical or not. A sample of rules from this rule base is 
presented in Fig. 4.  

Figure 4: eHealthyBox rule base. 

eMobi leP hone: an artefact used for sending sms. 
eLamp: a floor lamp used for visual notifications. 
eMP 3P layer: an mp3 player for audio messages. 
eDoormat : an augmented rug with pressure sensors 

attached, used for sensing the occupancy of a house. Based on 
the sequence the pressure sensors are pressed the eDoormat is 
capable of deducing if someone is entering or leaving a 
house, thus if the house is occupied or not. 

eMoodCube: an augmented Mathmos lamp with tilt 
switches attached, used for defining the current status of the 
user, such as “available”, “do not disturb” etc. 

According to the scenario Maria, a 78-years old woman, 
prefers to stay alone in her own house than to live with her 
son John. Because of the possibility of a heart attack, John 
wants to be informed about the condition of his mother. The 
state of Maria’s health is defined by a set of sensors attached 
to her body. The eHealthyBox monitors Maria’s state and 
informs John if her situation is critical and if she needs 
special care. If Maria’s situation is critical the eHealthyBox 
has to inform John, so it gets from the eDoormat through a 
synapse the context information if John is in his house or not. 

If John is in his house, depending on his current status that is 
determined by the eMoodCube, the eLamp and eMP3Player 
are used to provide the appropriate visual and acoustic 
notification respectively to him. If the eMoodCube is set to a 
“Do not disturb” status, John is notified only for the emergent 
events. In the case John is out of house, the eMobilePhone 
will send him an sms informing him about Maria’s condition. 

Initially John has to compose this application by selecting 
the artefacts that will take part and setting the synapses 
between their plugs. For example, John has to set a synapse 
between the suitable plugs of eHealthyBox and eLamp so that 
to denote that when his mother’s state is critical the eLamp is 
blinking. For this process John can use an editing tool, like 
the GWEditor [21], that supports the composition of such 
applications based on the Plug/Synapse model. The 
establishment of synapses between two compatible plugs 
results to the update of both artefacts’ private ontologies by 
the Ontology Manager. 

Then John has to set the rules that determine the context 
management process. This is feasible by using an Ontology-
based Supervisory Logic and Data Acquisition tool; a 
graphical user interface, which provides the user variable 
operations for viewing the knowledge represented by an 
artefact’s ontology, monitoring an artefact’s state and 
managing an artefact’s rules for the context management 
process. For example John using such a tool may define the 
rule that denotes that when he is out of house he will be 
informed about his mother’s condition by receiving an sms to 
his mobile phone. The updates on context management 
process’ rules through this tool conclude to the update of the 
artefact’s rule base by the Rule Manager. When the rule base 
of an artefact is updated dynamically during its deployment 
the Rule Manager informs the Inference Engine so that to 
restart its process with the updated rule base. 

The first target of our research was to define an ontology-
based context model that decouples the process of context 
acquisitions and interpretation from its actual use. This target 
was partially achieved since through the Plug/Synapse model 
the user has just to denote the sources of context that artefacts 
can exploit and to define the interpretation of this context 
through rules. This may become difficult especially for 
defining the rules of global decision making. So we believe 
that users need a tool that permits the definition of abstract 
rules for the whole application and creates the necessary ones 
to be stored in each artefact of the application. 

The second target of our work was to implement the 
proposed context management and reasoning process. The 
module that is responsible for this reasoning process is the 
Inference Engine. Assume the rules of eHealthyBox presented 
in Fig. 4. Any change to the low level context of eHealthyBox 
(raw data from its sensors) informs the Inference Engine and 
generates a new “run”. If the value of the pulse rate is above 
the threshold then the first three rules will be activated. Then 
the Inference Engine will inform the operating system of the 
eHealthyBox for the inferred knowledge; specifically it will 
define the message that must be sent through an SPlug. The 
other artefacts of our prototype will be informed for the 
context emerged from the state of eHealthyBox, which 
represents Maria’s condition, through the synapses between 
their SPlugs and the eHealthyBox’s SPlug. From experiments 
that we worked out we concluded that the inference 
mechanism that we developed and defines an artefact’s state 
and reaction based on context information is fairly efficient 
for a number of forty rules.   

Using our context management and reasoning process 
such applications can be dynamically changed either by 

If (PulseRate > Maria.PR_Threshold) then 
EnableEmergentEvent 
If (EnableEmergentEvent) then CallAmbulance(); 
If (EnableEmergentEvent) then NotifyJohn(); 

If (BodyTemp > 37.5) and (BodyTemp <= 38) then 
EnableFeverEvent 
If (BodyTemp > 38) and (BodyTemp <= 39) then 
EnableFeverAlert 
If (BodyTemp > 39) then EnableFeverEmergency 
If (EnableFeverEvent) then NotifyMaria(); 
If (EnableFeverAlert) then NotifyMaria(); NotifyJohn(); 
If (EnableFeverEmergency) then NotifyMaria(); 
NotifyJohn(); NotifyDoctor(); 
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adding or removing artefacts, as each artefact acquires and 
manages context separately based on its rule set. Finally the 
reasoning process permits user-defined rules that can be 
dynamically updated. 

6. Future Work 

In this paper we presented an ontology-based context 
modelling, management and reasoning process that was 
developed for the composition of context-aware UbiComp 
applications from AmI artefacts. 

Our next steps for the future are to represent the artefacts’ 
ontologies in OWL (Web Ontology Language) and the rules 
in SWRL (Semantic Web Rule Language) and try use the 
Jena framework for inference and reasoning. Additionally, we 
want to introduce a degree of uncertainty in the reasoning 
process based on the reliability of sensors’ measurements and 
by adding confidence values to the rules’ activation part. 
Finally, end-users may not need to configure each artefact 
separately (e.g. setting its rules), but to view and manage the 
whole application in an abstract way. The system and the 
context management process that we have developed can 
support both these approaches, but enhanced end-users tools 
focusing on context handling are necessary. 
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